

In-memory computing with emerging memory devices

Daniele lelmini

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano <u>daniele.ielmini@polimi.it</u>

From von Neumann to in-memory computing

Von Neumann architecture

- Volatile memory (DRAM)
- Data movement
- Memory bottleneck

- Resistive memory
- Compute in situ
- High parallelism

M A Zidan, et al. Nat. Electron. (2018)

Three types of in-memory computing

Adapted from D. lelmini and S. Ambrogio, Nanotechnology 31, 092001 (2019)

Daniele lelmini

Memory devices for in-memory computing

D. Ielmini and G. Pedretti, Adv. Intell. Syst. 1, 2000040 (2020)

Daniele lelmini

POLITECNICO MILANO 1863

Analogue resistive memory

- Analogue conductance controlled by a compliance current I_c
- Good linearity below 0.5 V

Z. Sun, et al., PNAS 116, 4123 (2019)

Matrix-vector multiplication

D. Ielmini and H.-S. P. Wong, Nature Electronics 1, 333 (2018)

 Multiplying a matrix A and a vector x in a CPU requires individual products a_{ij}*x_j, and summation → multiply/accumulate (MAC) process

6

 In a crossbar, the operation is carried out <u>physically</u> by Kirchhoff's and Ohm's law, in just <u>one step</u>

POLITECNICO MILANO 1863

1 – Forward propagation

7

POLITECNICO MILANO 1863

2 – Error evaluation

Supervised training = pattern is submitted with the corresponding label \rightarrow we know the correct answer

8

Daniele lelmini

POLITECNICO MILANO 1863

3 – Weight update

9

W₁₄

W₂₄

W₃₄

W44

Device non-linearity

- In general, physical devices are not linear in time and voltage
- Record linearity for Li-based ECRAM (IBM, IEDM 2018)

POLITECNICO MILANO 1863

10

In-memory convolutional neural networks (CNNs)

3D RRAM array P. Lin, et al., Nat Electron 3, 225 (2020)

Daniele lelmini

POLITECNICO MILANO 1863

Inverting MVM

Matrix-vector division is equivalent to solving Ax = b, with $x = A^{-1}b$

Z. Sun, et al., PNAS 116, 4123 (2019)

Daniele lelmini

POLITECNICO MILANO 1863

O(1) complexity of inverse MVM

PRL 103, 150502 (2009)

PHYSICAL REVIEW LETTERS

Quantum Algorithm for Linear Systems of Equations

Aram W. Harrow,¹ Avinatan Hassidim,² and Seth Lloyd³ ¹Department of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom ²Research Laboratory for Electronics, MIT, Cambridge, Massachusetts 02139, USA ³Research Laboratory for Electronics and Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA (Received 5 July 2009; published 7 October 2009)

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector \vec{b} , find a vector \vec{x} such that $A\vec{x} = \vec{b}$. We consider the case where one does not need to know the solution \vec{x} itself, but rather an approximation of the expectation value of some operator associated with \vec{x} , e.g., $\vec{x}^{\dagger}M\vec{x}$ for some matrix M. In this case, when A is sparse, $N \times N$ and has condition number κ , the fastest known classical algorithms can find \vec{x} and estimate $\vec{x}^{\dagger}M\vec{x}$ in time scaling roughly as $N\sqrt{\kappa}$. Here, we exhibit a quantum algorithm for estimating $\vec{x}^{\dagger}M\vec{x}$ whose runtime is a polynomial of log(N) and κ . Indeed, for small values of κ [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.

DOI: 10.1103/PhysRevLett.103.150502

PACS numbers: 03.67.Ac, 02.10.Ud, 89.70.Eg

13

In-memory PageRank

Z. Sun, et al., PNAS 116, 4123 (2019)

	Throughput [TOPS]	Energy eff	iciency	[TOPS/W]
In-memory	0.183	(362	
TPU	92		2.3	150X

Daniele lelmini

POLITECNICO MILANO 1863

14

0.6

Solving a Schrödinger equation

POLITECNICO MILANO 1863

Volatile RRAM

• Volatile behavior due to Ag diffusion and filament disconnection in the μ s-ms timescale

Analogy with biological synapses

Daniele lelmini

POLITECNICO MILANO 1863

Direction selectivity in the human retina

POLITECNICO MILANO 1863

Conclusions

- In-memory computing by crosspoint operations:
 - MVM (dot product) \rightarrow DNN inference
 - Outer product \rightarrow DNN training
 - MVM + feedback (inverse MVM) \rightarrow linear algebra
- Device physics for brain-inspired neuromorphic computing (shortterm RRAM)

Daniele lelmini

grazie

POLITECNICO MILANO 1863